Least Absolute Deviation Estimation of Linear Econometric Models : A Literature Review
نویسندگان
چکیده
I. Introduction: The Least Squares method of estimation of parameters of linear (regression) models performs well provided that the residuals (disturbances or errors) are well behaved (preferably normally or near-normally distributed and not infested with large size outliers) and follow Gauss-Markov assumptions. However, models with the disturbances that are prominently non-normally distributed and contain sizeable outliers fail estimation by the Least Squares method. An intensive research has established that in such cases estimation by the Least Absolute Deviation (LAD) method performs well. This paper is an attempt to survey the literature on LAD estimation of single as well as multi-equation linear econometric models.
منابع مشابه
Variable Selection in Nonparametric and Semiparametric Regression Models
This chapter reviews the literature on variable selection in nonparametric and semiparametric regression models via shrinkage. We highlight recent developments on simultaneous variable selection and estimation through the methods of least absolute shrinkage and selection operator (Lasso), smoothly clipped absolute deviation (SCAD) or their variants, but restrict our attention to nonparametric a...
متن کاملEconomics 508 Lecture 7 Introduction to Specification Testing in Dynamic
In this lecture I want to briefly describe some techniques for evaluating dynamic econometric models like the models for gasoline demand you have been estimating. Until now, we have implicitly assumed that these models satisfied the classical assumptions of the Gaussian linear model. In particular, we have assumed that the error sequences {ut} were iid and approximately Gaussian, thus justifyin...
متن کاملA New Light from Old Wisdoms : Alternative Estimation Methods of Simultaneous Equations with Possibly Many Instruments
We compare four different estimation methods for a coefficient of a linear structural equation with instrumental variables. As the classical methods we consider the limited information maximum likelihood (LIML) estimator and the two-stage least squares (TSLS) estimator, and as the semi-parametric estimation methods we consider the maximum empirical likelihood (MEL) estimator and the generalized...
متن کاملNonparametric LAD cointegrating regression
We deal with nonparametric estimation in a nonlinear cointegration model whose regressor and dependent variable can be contemporaneously correlated. The asymptotic properties of the Nadaraya-Watson estimator are already examined in the literature. In this paper, we consider nonparametric least absolute deviation (LAD) regression and derive the asymptotic distributions of the local constant and ...
متن کاملLeast Absolute Relative Error Estimation.
Multiplicative regression model or accelerated failure time model, which becomes linear regression model after logarithmic transformation, is useful in analyzing data with positive responses, such as stock prices or life times, that are particularly common in economic/financial or biomedical studies. Least squares or least absolute deviation are among the most widely used criterions in statisti...
متن کامل